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A model has been developed for spinning mode acoustic radiation from the inlet of an air-
craft engine. Consider the region bounded by the z-axis and the curve PABCDEF in Fig. 2.
The model inlet is the solid of revolution obtained by rotating this region about the z-axis.
The circular disk S1 generated by rotating the line segment C1 =0B separates the interior of
the inlet from its exterior. The interior acoustic pressure consists of a pure azimuthal mode for
a hardwall boundary condition. The interior and exterior acoustic pressures and their normal
derivatives are matched on S1. A hardwall boundary condition is applied on the surface 52
generated by rotating the curve C2 = BCDEF. The governing boundary value problem for the
Helmholtz equation is first converted into an integral equation for the unknown acoustic
pressure on S1+ 52, and then the azimuthal dependence is integrated out yielding a one-
dimensional integral equation over C1+ C2. We approximate the pressure on C1 by a trun-
cated interior modal expansion and on C2 by a linear spline.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Methods to suppress aircraft engine noise have included the development of
acoustics linears, high Mach number inlets, and the use of inlet geometry to redirect
the sound. Experiments with and without flow have been conducted at Langley
Research Center [1, 2] to study these methods. In particular, in July of 1982
Richard Silcox [2] examined the effect of inlet geometry on the reflected and
radiated acoustic fields; this paper describes a mathematical model for the no-flow
experiments.

The experiments of Silcox were designed around the spinning mode synthesizer
(SMS). Figure 1 shows a plan view of this facility in the Langley Research Center
Aircraft Noise Reduction Laboratory. The SMS can excite a nearly pure (20-30 dB
isolation) azimuthal mode inside the hard cylindrical duct which pierces the wall of
the anechoic room. By attaching various test inlets to the end of this duct, inlet
geometry can be varied.

* Research was supported by the National Aeronautics and Space Administration under NASA Con-
tracts NAS1-17130 and NAS1-16394 while the author was in residence at the Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, Va. 23665.
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FiG. 1. Plan view of SMS/flow duct facility in Aircraft Noise Reduction Laboratory.

We attempt to retain the essential features of this experiental setup in our model
inlet. Consider the region bounded by the z-axis and the curve PABCDEF in Fig. 2.
The model inlet is the solid of revolution obtained by rotating this region about the
z-axis. The circular disk S1 generated by rotating the line segment Cl=
separates the interior of the inlet from its exterior. The experimental test inlet is
modeled by the surface produced by rotating the curve BCD. The revolution of
DEF generates a termination for the model inlet. We denote by S2 the surface
obtained by rotating C2 = BCDEF.

To model the SMS the acoustic pressure in the interior of the inlet consists of a
pure, cylindrical azimuthal mode for the Helmholtz equation with hardwall boun-
dary condition. In the exterior region the pressure is required to satisfy the
Helmholtz equation and the radiation condition at infinity. The interior and
exterior pressures and their normal derivatives are matched on S1. A hardwall
boundary condition is applied on S2. This boundary value problem is converted

FIGURE 2



DUCT ACOUSTICS 445

into an integral equation over S1+ S2 using Helmholtz’ formula. The unknowns in
the equation are the complex pressure on S2 and the reflection coefficients in the
interior modal expansion. By assuming a pure azimuthal mode excitation, it is
possible to integrate out the azimuthal dependence which yields a one-dimensional
integral equation at the expense of a somewhat more complicated kernel. This
model was suggested by the aproach of Kagawa et. al. [5] to loudspeaker design.

We note that uniqueness holds for the boundary value problem if the surface
generated by ABCDEF is smooth (see Section 6); however, uniqueness does not
hold for the integral equation if the wave number of the excitation is an eigenvalue
for the Helmholtz equation in the interior of S1+ S2 with Dirichlet boundary con-
dition. Numerically, we observe that, when discretized, the resulting linear system
becomes increasingly ill-conditioned as an interior eigenvalue is approached. One
effective method of removing this difficulty is to replace the free space Green’s
function in Helmholtz’ formula by a modified Green’s function (see [16-19], see
also [14, 15]). Since the wave numbers of interest did not yield ill-conditioned
linear system in our work, we did not use the modified Green’s function approach.

The numerical method used is collocation. The unknown pressure on C1 (and its
normal derivative) is approximated by a finite Bessel series which is a truncation of
the interior modal expansion. The unknown pressure on C2 is approximated by a
linear spline. The absolute error in the solution is estimated at the knots of the
spline and this information is used to recommend the number of knots required for
a given error tolerance on C2. This information can also be used to distribute the
recommended number of knots to achieve an equal distribution of the absolute
error. This is useful if it should be necessary to run the code a second time in order
to achieve a better error performance. The code also provides (optionaily) for one
step of Neumann iteration. This yields a natural interpolation formula for the
pressure and gives an approximation with the same smoothness as the exact
solution. Finally, Helmholtz’ formula is used to compute the pressure on a semicir-
cle in front of the inlet for comparison with experimental results.

This paper explores numerically the nonstandard boundary value problem
generated by our model, the knot redistribution scheme suggested by a theorem of
de Boor, and the use of a two-dimensional adaptive integrator to estimate the
oscillatory and sometimes singular integrals that arise. We point out that duct
acoustics has been studied extensively in recent years. The reader is referred to [3]
for a bibliography and a discussion of the various numerical methods which have
been used.

2. THe MoODEL
Let a denote the interior radius (¢=0.15 m) of the test inlet in Fig. 1 and

introduce a cylindrical coordinate system (Z, 7, 8) with origin 0 and positive z-axis
pointing out of the model inlet. Let « denote the angular frequency of the

581/64/2-12
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excitation, ¢ the speed of sound, and k = w/c the reduced wave number. We will use
the dimensionless coordinates z=2Z/a and r=r/a and the parameter k =ka. The
model inlet in the (z, r, §) coordinate system is indicated in Fig. 2. As explained in
Section 1, the circular disk S1 is obtained by rotating the line segment C1 =08
about the z-axis, while surface S2 is obtained by rotating C2 = BCDEF about the
z-axis. In this section we will assume that the surface generated by rotating
ABCDEF about the z-axis is C'.

Let 2 denote the exterior of S1 + 52 and let D denote the interior of S1+ S2. We
denote complex pressure by &(z, r, 8) e~ where

@ =g, z(4)<z<0,rgl

=y, in 2,

where z(A) <0 denotes the z-coordinate of point 4 in Fig. 2. We note that the
acoustic pressure obtained by this model is independent of z(4). For a fixed
positive integer m, we model the SMS by using the modal expansion ¢ = ge™® with

¢= i (A(n) ™7 4+ R(n) e =Ly J (A(n) r). (2.1)

n=0

This expansion comes from separation of variables in the reduced wave equation
plus application of the hardwall boundary condition. In practice other “m” or
azimuthal modes are present inside the duct but are at least 20 dB below the
desired mode. In (2.1) J,, denotes the ordinary Bessel function of the first kind and
order m. The increasing sequence A(n) is defined by J,,(4(n)) =0, n > 0. We assume
that k # A(n) for all n and define NCT to be the integer satisfying A(NCT - 1)<

k < A(NCT). Then

Lin)=(k>—(A(n)*)",  0<n<NCT-1

(2.2)
—iL(n) = ((A(n))* — k)", n= NCT.

The radial modes corresponding to n=0,.., NCT —1 are called cuton, the other
cutoff, and NCT is the number of cuton radial modes. Complex R(n) is called the
reflection coefficient of the nth radial mode, while complex A4(n) is the amplitude of
the forward propagating modes, since we assume that 4(n) =0 for n > NCT. This is
a reasonable assumption since the plane of the 24 acoustic drivers of the SMS is
about 13 duct interior diameters from the mouth of the experimental duct. We
assume that the amplitudes A(r) are known for 0 <n<NCT —1; ie., in a given
experiment this data is available from the SMS. The reflection coefficients R(n),
n >0, are unknowns. We note that the dependence on m in the above notation has
been suppressed.

The appropriate boundary value problem for the Helmholtz equation (the wave
equation with the harmonic time dependence separated out) can be stated as
follows:
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Find ¢ in class C2(Q) n C(Q) such that Ay + k%Y =0 in Q,

W _ on S2, (2.3)
on

¥ satisfies the radiation condition at infinity, Y = ¢, and dy/0z = 0¢/0z on S1.

We use Helmholtz’ formula (an application of Green’s third identity) to convert
(2.3) into an integral equation (see [6]). Let x denote the observation point and x’
the integration point. Then

Y(x) - 4r, XeQ
- 2m, xeS1+ 82— (S1nS2)
-7, xeS1+82
-0, xeD

LT ) o

where R=|x —x'|. Here ' denotes the normal to S1+ S2 pointing into D. Now
uniqueness for (2.3) implies that y =/(z, r) e™®. If we change to cylindrical coor-
dinates in (2.4), multiply by e "™, and integrate from 0= —n to 6 =7, we obtain
the one-dimensional integral equation

Y(z,r), (z,r)eC2—(C1 N C2)
¥ (z, r)/2, (z,r)=C1nC2 =—‘[lr dr-—(ﬁ(O r'YK(z,r;0,r)
(z, r), (z,r)eCl 1
+j v dr' §(0, r) (z r.0,r)
0
—J rds gz, r) K(z,r z,r), (2.5)
C2
where
Kz r; 2, r)=n"" j cos(mY) 5'; 4y, (2.6)
R=((z= 2V +(r—r'V +4r' sin?(¥/2))'", 27)

s’ denotes arc length on C2, and 5’ denotes the normal to C2 pointing toward the
inlet interior. We note that (2.5) appears to be homogeneous; however, ¢ in (2.1) is
the sum of two terms, one of which is assumed known. This is the excitation term

i A(n)e™™2 J _(A(n)r)

n=0

controlled by the SMS.
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3. THE NUMERICAL METHOD

Our numerical method is collocation. We require (2.5) to hold at specified
(collocation) points on C1+ C2. We obtain a full, square complex linear system
whose solution provides an approximate solution to (2.5).

For the approximation of § we truncate (2.1) at n=N1>NCT — 1,

¢ =~ % (A(n) ™" + R(n) e~ "™"M2) J,,(A(n) r). (3.1)

n=0

To approximate Y on C2, we first parameterize this contour. We will refer to cer-
tain values of this parameter ¢ as knots. We require points B, C, D, E, and F to be
knots. Additionally, knots are added so that BC is divided into K2 subintervals of
equal length with respect to this parameter, CD into K3 subintervals, DE into K4
subintervals, and EF into K5 subintervals. This yields N2+ 1=K2+ K3+
K4 + K5 + 1 knots.

We use N2 Chapeau functions, y,(s) depending on arc length s, to approximate
. These basis functions are centered at the values of s corresponding to the knots,
except for the knot corresponding to the endpoint F of C2. This is because the
solution at F must be zero for azimuthal mode index m > 1. Hence, we write

N1+ N2

Yy~ Y Cmy,(s) onC2 (3.2)

n=~N1+1

We have experimented with two numerical procedures.

I. (i) Collocate at (0, ry),..., (0, ry,) where O<ro< -+ <ry <1 satisfy
J.(A(N1+1)r)=0; ie., choose the r coordinates to be positive zeros of the first
term left out in the truncation (3.1) with z=0.

(ii) Collocate at the points (Zni g 1o Pt 4 1)seees (Z1 4 w25 P14 N2)
corresponding to the centers of the Chapeau functions.

II. (1) Asin L.

(ii) As in I but replace the equation generated by the collocation point at B
by the continuity equation
N1 N1
= Y R(n)J (An)+C(N1+1)=3 A(n) J,(A(n)). (3.3)

n=0 n=0

Now let R=[R(0),., R(N1)]", C=[(N1+1),.,C(N1+N2)]", and A=
[A(0),.., A(N1)]". We write the linear system resulting from T or II by

CKTOT*[R, C]" = CRITE*A, (3.4)

where CKTOT is a full, complex square matrix of order N1 + N2+ 1 and CRITE is
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an (N1+1)x(N1+N2+1) complex matrix. Writing (3.4) in block form for
procedure I we have

d+B| € R B—oA
—|= A, (3.5)
e+7 |9+9 || C &—F
where
AL n)y=J, (Am)r), 0<ln<NI, (3.6)
B(Ln), O0<Ln<NI
&(n), NI+1<I<NL+N2,0<n<NI
1
— —iL(n) j rdr J(Mn)r) K(z), 130, 7'), (3.7)
0

! oK
Flm)=—[ 1 d' I (n) 1)Y= G 0,1,
0 Oz

NI +1<ISNI+N2,0<n<Nl, (38)

(i, n), 0<1<N1,N1+1<n<N1+N2} f RTINS )
= r as S )=z 152, N

%(,n), NI+1<Ln<NI+N2 e on’
(3.9)
D(N1+1, N1 +1)=1
2(,1)=1, NI+2<I<N1+N2 (3.10)

P(i, j)=0, NlI+1<i#j<Nl+N2

We note that F(,n)=0 for 0<I<N1+1 because (6K/0z')(0,r;0,r')=0 for
O<sr#r<l.

If procedure II is used, then row N1 4+ 1 in CKTOT and CRITE must be changed
according to the continuity equation (3.3).

The system (3.4) is solved NCT times with “basis” excitations A,,..., AycTr—1
which satisfy A (i) =6,. We call the resulting approximate solutions to (2.5) basis
approximate solutions and denote them by ¢’ and ¥’

Calculation of the basis far field (or basic first Neumann iterate) is done using
the Helmholtz’ formula:
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Fiz,r) 2, (z,r,8)in 2
-1, (z,)eCl+ C2—(C1 nC2)
(z, r)= Cin(C2

—

NI»—-

_—f rdr-—(Or)K(z,rOr)
1

+[ rar g, r) (z,r 0,7)
0

- r’ds’zi(z’,r)gK,(z rz,r), (3.11)
2

Given the coefficients 4(0),..., AINNCT — 1) of the desired excitation, we find the
corresponding approximate solution to (2.5) and the far field (or first Neumann
iterate) from

NCT -1 NCT -1

Y AG)¢, F= Y AGF (3.12)
i=0 i=0

The initial choice of N1 and N2 in (3.1) and (3.2) may not always be consistent
with the desired accuracy. Also, the equispacing of the knots with respect to the
parameter ¢ is usually suboptimal. Section 6 discusses rules for choosing N1 and N2
initially. We now present a procedure (see [7]) which uses the first approximate
solution obtained to estimate the absolute error at the knots, and then recommends
new values for K2, K3, K4, and K5 and a new distribution of the knots. The goal is
to equally distribute the absolute error among the knots and to achieve a desired
accuracy.

Let us explain this procedure for BC which is initially divided into K2 subinter-
vals. Let ¢; denote an interior knot and let 4; and 4, denote the mesh spacing
immediately to the left and right of ¢,. Set h=max{h,, h,,,}. At 1, we estimate the
second derivative with respect to ¢ of the jth basis approximate solution to (2.5) by
interpolation with a parabola at z,_ |, ¢, and ¢, |. Denote this estimate by d/ and
set d;=max{|d/]: 0<j<NCT — 1}. We estimate the absolute error at 7, by d;h*/2.
Let AE denote the sum of the errors at the interior knots divided by the number of
interior knots, K2 — 1. Let AER denote the desired absolute error, and set

L2 =[K2//AER/AE] + 1,

unless the result is 1, in which case set L2 =2.

Next, we partition BC into L2 subintervals so that the error is approximately the
same at all interior knots. Set p= K2 and /= L2 and let ¢,,..,, t,, , denote the initial
knots on BC. Set u; =1, u;=(t,+1,,,)/2, i=2,.,p—1, u,=1t,,,. Let G denote
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the piecewise constant function defined by G(t)=./d;,, for u;<t<u;,,. For
u; Su<u,, define

y=f“ G(r)dr  and y,,=j"" G(1) dt.

uy

Now y is increasing in u so let u = H(y) denote the inverse function. Construct /4 1
new knots according to w,=1,, w,=H((i—1) y,/I), i=2,.,, 0w, ;=1t,,,. This
procedure is based on our observation that in this problem the redistribution of a
fixed number of knots has little effect on the average error AE.

4. PROGRAMMING NOTES

In Fig. 2 curve BC is the arc of an ellipse and curve CD is a line segment. Curve
BCD is the exact test inlet contour, while curve DEF is an artificial termination for
the inlet. We observed that changing the length of DE did not change the accurate
digits in the computed reflection coefficients or in the computed acoustic pressure
for z>0. This was also true if E was replaced by E so that DE is a horizontal line
segment and EF is a quarter arc of a circle; i.e., the introduction of a corner at point
D had an insignificant effect on the numerical results. The results reported below
are for the computational exterior inlet contour BCDEF which is an approximation
to the smooth contour BCDEF shown in Fig. 2.

Almost all the execution time of our code is devoted to the subroutine which
assembles the complex matrices CKTOT and CRITE in (3.4). The difficulty is that
the oscillatory and singular double integrals in (3.7)~(3.9) must be computed. We
use adaptive integration which is ideal for this type of behaviour, but expensive.
Alternatively, we could have developed a suitable product formula and then used
the Nystrom method instead of collocation.

We have separated the integrands in (3.7)-(3.9) into a bounded part and a
singular part corresponding to the axisymmetric potential equation.

Let p=((r'—r)?+(z —z))" and p=((r'+r)*+ (2 —z,))"? let {=kR/2,
n'=(N,,N,), and let # and & denote the complete elliptic integrals of the first
and second kinds as functions of the complementary parameter m, = p?/p? (see
[8,91).

Then in (3.7) we have

B, n)= —%’9[1 Y dr T (An)r)
0

x J.n dY(cos(mY)(e*® — 1)+ cos(mY)—1)/R
1]

iL(n) (' mdY
— J.Ordr J,,,(A(n)r)jo—R—
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R e g ay )
T 0

X j " dY(i cos(mY) sin({) €€ — sin¥(mY¥/2))/<
0

4

L ) ) o O )i,
0
while in (3.9) we have

SULn)=n"" j rds' i (s')
2

2 a ei/(R__l 0 i
L dY(cos(mY)a—n,( R )+(cos(mY)—1)a—n~,~§)
N I
1 [ ’ —
+n jﬂr &Y | Aoz
k2 I3 1P ’
=5 jﬂr ds' ,(5')

: J TAY(NAZ —2)+ No(r' — r+ 2r,sin%(Y/2)))

' {icos(mY) o (C cos ng— sin{+ iSiICl C) N (sin(ngY/Z))z}

+ﬂ“f ds,-lfn(_s)
2 p

{2r'€(m )N, (r,—1') + NAz;= 2'))[p* + N(E(my) — A (m1)) }.

For the evaluation of J,, J,,, m>2, & (m;), and &(m,) we use the LRC library
routines BJIR, BKIR, ELIPKC, and ELIPEC. For the evaluation of the one- .
dimensional integrals we use the LRC library routine CADRE which is a
modification of an algorithm due to de Boor [10]. For the double integrals we use
the LRC library routine CAREDB which computes the integral as iterated single
integrals with the single integrals computed as in CADRE.

CADRE is an adaptive cautious Romberg extrapolation routine which is
designed to identify certain tyes of integrand behaviour by examining a ratio based
on the previous three trapezoidal sums. We split the integrals so that the
singularities are endpoint singularities. If such a singularity is detected, CADRE
switches to a process similar to Aitken’s 6° process to estimate the integral and
evaluate the error. As a result of this switching, we have observed that execution
times decrease with the error tolerances. We use EPS(1)=EPS(2)= £—5, where
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EPS(1) is the maximum allowable relative error and EPS(2) the maximum
allowable error. These remarks also hold for CAREDB. Adaptive integration is par-
ticularly suited to oscillatory and (or) singular integrals. It offers the possibility of
constructing a test code for an integral equation method in a relatively short time.

Once the linear system (3.4) is assembled, it is solved using the LRC library
routine CXGCOIT. This subroutine performs an LU decomposition, solves by
forward and backward substitution, and estimates the condition number
(CONDNUM) of CKTOT in the 1-norm. Optionally, iterative refinement can be
performed (see [11]). For more details see [12].

5. NUMERICAL RESULTS

All computations were performed on a CDC Cyber 175 at NASA Langley
Research Center. We give results for the programs which collocate at C1 ~ C2
instead of demanding the continuity equation (3.3) hold. We have found little dif-
ference in the outputs of these two sets of programs.

For a given azimuthal mode index m, it is best to start with a value of k =ka so
that one mode is cuton (NCT = 1) and then increase k to the desired level. Good
starting values then are N1 =NCT + 5 and K2=20, K3=10, K4=10, K5="7. Our
code recommends new values for K2.., K5 with respect to a user-supplied
tolerance. The user has the option of running the code again with these new values.
We have provided a continuity check which outputs the modulus of the difference
in the two sides of (3.3) for an approximate solution. If this continuity check is
greater than the error tolerance, then N1 can be increased. The error estimates on
C2 and the continuity check are a reasonable indication of the accuracy attained.
Of course, the condition number and the accuracy with which CKTOT and CRITE
are computed must also be considered.

Tables I and II present some of our numerical results. Table I shows results for
m=1 and k=ka=2.66 and an increasing sequence of values for N1 + N2. CONT
is the value of the continuity check. The error in |R(0)| and the error at C1 ~ C2
are estimated by comparison with the case N1+ N2="78.

TABLE I
Maximum
Angle Error Error Error
N1 N2 CONDUM CONT | R(0)] R(0) |R(0)]| ClnC2 est. C2
6 18 29 0.0016 0.3555 —20.76  0.011 0.0077 0.0080
2 34 26.8 0.006 0.3479 -20.13  0.0029 0.0012 0.0021
6 34 34.1 0.00076 0.3476 —20.17  0.0027 0.0015 0.0019
10 34 41.2 0.00044 0.3475 —20.17  0.0026 0.0019 0.0019
6 68 479 0.0011 0.3451 —20.00  0.000043 0.00037 0.00051
10 68 542 0.00038 0.3451 —-20.00
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TABLE 11
Max Far Field SPL =0dB

Numerical Experimental

k=Ka Coefficient dB Angle (°) dB
2.66 A(0) 36.0 0 36.1
R(0) 26.8 —20.2 270

3.20 A(0) 338 0 326
R(0) 18.1 402 25.2 18.5

5.54 A(0) 24.4 —84 25.8
R(0) 22+ 1.64 29.8 183

A(1) 37.8 —139.1 39.2

R(1) 28.5 141.3 29.6

6.50 A(0) 239 704 229
R(0) —92+43 19.9 9.9

A(1) 345 —64 335

R(1) —13+17 —54 99

7.68 A(0) 234 —159.6 235
R(0) —54+22 —168.2 34

A(1) 330 56.6 331

R(1) —4+12 -57 9.5

Table II gives for m=1 a comparison of experimental and numerical results for
k=266, 3.20, 5.54, 6.50, and 7.68. Some of these results are in close agreement; for
example, for k=266, we have |R(0)|/|4(0)|=0.348 (numerical) and 0.35
(experimental). However, for k=320, we have |R(0)|/|4(0)] =0.164, while the
experimental value is 0.196. Our error tolerance here is 0.002. The continuity check
and error estimates on C2 are consistent with this tolerance. Generally, when R(i) is
small compared to max{|A4(0)|,.., |4(NCT —1)|}, we have the greatest relative
error. We have indicated the error bracket on some of these entries in Table II. But

SPL.0B
8

ol b b bonadinng
-100 -60 -20 20
DEGREES

Fic. 3. m=1,k=266, NCT=1.
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Fig. 6. m=1, k=6.50, NCT =2.
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SPL.0B
8 %
T[T
3
E

~40

-50 EAMAMMMWM
- -20 20 &0 100
DEGREES

F1G. 7. m=1, k=768, NCT=2,

these brackets do not account for some of the discrepancies. We note that the dB
levels in Table II are referenced so that the peak sound pressure level in the far field
is 0 dB (for both experimental and numerical results).

Figures 3, 4, 5, 6, and 7 give far field patterns computed on a semicircle of radius
20 in front of the duct (see Fig. 1). We note the good agreement between the
numerical and experimental curves. The small oscillations in the experimental curve
may be due to reflections, while the lack of symmetry indicates less than complete
isolation of the desired arimuthal mode. We compute and store a basis approximate
solution and far field. Then we can interactively produce approximate solutions and
far field patterns for any given excitation strengths 4(0),..., A(NCT — 1). Thus we
have an NCT parameter family of possible far fields that can be generated quickly.
It is possible, for example, to make the —30 dB downward spikes in the k= 6.50
case almost completely disappear by choice of excitation strengths. But roughly
speaking, these different patterns have the same “envelope.”

We have experimented with the best location for the interface surface S1. This is
a trade-off between the two types of approximation—Bessel series and piecewise
linear spline. The best efficiency is obtained by using the modal expansion over as
large a region as possible.

6. UNIQUENESS

We conclude by showing that a slight modification of the standard proof shows
that uniqueness holds for the boundary value problem of Section 2. In this section
we will use subscript notation for partial derivatives. Let w denote the difference of
two solutions to this boundary value problem. Then w is in class CHQ)n C'(2),
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Aw+k*w=0, in Q, with k real, the normal derivative of w vanishes on S2, w
satisfies the radiation condition at infinity, and

z R(n) J,{(A(n) r) ™, z=0,0<r<1,
and
w,= Y. (—iL(n)) R(n) J,(A(n)r)e™,  z=0,0<r<L.
n=0

Let S, denote the sphere of radius p centered at the origin. Then there is a py >0 so
that S1+ 52 is in the interior of S, for all p > p,. For p>p, let 2, denote the
domain interior to S, and exterior to S1+ S2. The Green’s second identity applied
to w and w, the conjugate of w, yields

ozf (W A% — W Aw) dx = (wib, — o, ) dS,
QP

J~31 + 82+,

where # denotes the normal pointing out of . It follows that

j (Wwp—wwp)dS=j (ww, —ww_)dS
S s

NCT -1

—4ni Y (k2—l(n))1/2[R(n)|2Jlrdr(Jm(l(n)r))z.
0

n=0

]

Now w satisfies the radiation condition at infinity hence lim, , ,, R(p) =0 where

R(p):L |w, — ikw|? dS

=[ Iwl2ds+k?[ wiPds+ik [ (w,—wi,)ds.
S, s,

Sp

These last two equations yield

R(p)=[ Iw,"dS+k*| Iw|?dS+kC
S, S,
where C >0 is a constant independent of p. It follows that
lim j |w|2 dS =0.
p—o ®

But then the first lemma of F. Rellich {13] implies that w vanishes for p > p,. Since
0 is connected and w is analytic, it follows that w vanishes in Q. This completes the
uniqueness proof.
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